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Effective Feedback Control in Pump Laser Modules
Stabilized by Fiber Bragg Gratings
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Abstract—On the basis of Jones matrix calculus, we derive an
effective reflector model for fiber Bragg grating (FBG) stabilized
pump laser modules. This model includes a parameter that takes
the effects of varying polarization upon propagation in the fiber
into account. This feedback parameter is expressed as a function
of the parameters describing the linear and circular birefringence
in the fiber. It provides a means for control of the effective feed-
back received by the pump laser and, hence, for optimization of
the pump laser characteristics. Several examples of different fiber
arrangements are discussed both theoretically and experimentally
regarding their robustness against polarization variation. In gen-
eral, a combination of twist-induced circular and bend-induced
linear birefringence is identified as the cause for loss of effective
feedback that ultimately can lead to complete delocking of the laser
from the FBG. Guidelines for optimized fiber geometries are given.

Index Terms—External feedback, fiber Bragg grating (FBG),
fiber birefringence, pump laser modules, semiconductor lasers.

I. INTRODUCTION

THE PROPERTIES of an erbium-doped fiber amplifier
(EDFA) depend on the characteristics of the pump laser

diode. Today, fiber Bragg gratings (FBGs) are a standard passive
component for wavelength and power stabilization of 980-nm
pump lasers [1]–[4]. For maintaining gain flatness over a wide
range of operating conditions the light reflected from the FBG
locks the laser to the desired narrow wavelength interval de-
fined within the EDFAs absorption band. The most common
build technology for FBG stabilized pump laser modules is one
that uses a standard single-mode fiber. This approach has proven
to be practical and cost-effective in large-scale manufacturing,
and several hundreds of thousands of such modules have been
deployed in optical networks during the past decade by our
company.

The feedback from the FBG is only effective if the light
reflected into the semiconductor laser cavity has the proper
transverse-electric (TE) polarization. A change of the state of
polarization (SOP) upon propagation in the fiber can result in
a loss of effective feedback and, in the worst case, complete
loss of locking. Such a change of the SOP is, in general, a
result of birefringence present in the fiber that is introduced
whenever the circular symmetry of the ideal fiber is broken, and
an anisotropic refractive-index distribution in the core region
is present [5], [6]. Standard single-mode fibers always exhibit
some birefringence that is either an inherent property due to
material nonuniformity introduced during the fabrication pro-
cess or a result of some external action on the fiber, such as
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Fig. 1. Schematic of an FBG-stabilized pump laser module (not to scale).
Rb , Rf , and Rg denote the back, front, and FBG power reflectivities, respec-
tively. The distance between laser chip and FBG is typically 0.5 to 2 m.

elastic deformations. For FBG-stabilized modules used in ED-
FAs such deformations result from bending and twisting as the
fiber is wound into the EDFA during assembly. For modeling
and optimizing the properties of pump modules, it is useful for
EDFA designers to understand the influence of the fiber geom-
etry on the effective feedback and, hence, on the electro-optic
characteristics of the module. This is particularly important for
newly emerging 980-nm pump laser applications such as un-
cooled modules or high-power temperature-stabilized modules
for “one-for-two-replacement” pump schemes in EDFAs with
increasingly stringent requirements on performance, especially
regarding power and wavelength stability [7]–[9].

This paper is based on two previous publications of ours that
discuss the effective reflector model for pump lasers [10] and
the effect of changing polarization due to fiber birefringence
on pump module characteristics [11]. Here, we will combine
the results derived in these two articles and include the fiber
birefringence into the effective reflector approach. In particu-
lar, we will derive a parameter in the expression for the ef-
fective front reflectivity of the compound cavity (the feedback
parameter) that includes all effects of fiber birefringence. On the
basis of this model, we will discuss means of feedback control
and the robustness against polarization change of various fiber
pigtail arrangements.

II. FBG-STABILIZED PUMP LASER DIODES

A schematic of an FBG-stabilized pump laser diode is shown
in Fig. 1. The laser cavity is formed by its front and back mir-
rors with power reflectivities Rf and Rb , respectively. The light
emitted through the front facet is coupled into the fiber with effi-
ciency Tc . In the most common scheme, an antireflection coated
lens fabricated on the fiber tip is used for optimizing the coupling
efficiency. The light propagates along the fiber and is reflected
by a Bragg reflector of reflectivity Rg positioned at a distance of
0.5 to 2 m from the laser. The resonator defined by the laser front
mirror and FBG is referred to as the external cavity. In commonly
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used pump modules, Rf and Rg take values of 0.01 to 0.1, and
Rb is higher than 0.9. Description of this multiple cavity system
is simplified by combining the laser front facet and FBG into
an effective reflector with a compound effective front reflectiv-
ity Reff [10]. Thereafter, it is usually sufficient to consider the
cavity formed by the effective front reflector and the laser back
facet, whereas all other optical cavities may be neglected.

A typical index-guided narrow-stripe InGaAlAs/GaAs semi-
conductor laser emits light linearly polarized along the TE di-
rection. Hence, only TE-polarized light reflected from the FBG
into the laser cavity effectively contributes to locking. Extend-
ing the expression given in [10] by including a parameter f , we
can write the compound front reflectivity Reff as

Reff = Rf + T 2
c (1 − Rf )2

fRg

1 − Rf Rg
≈ Rf + T 2

c fRg (1)

where the approximation holds, since Rf � 1 and Rf Rg � 1.
The influence of the effective reflectivity on the pump laser

properties, such as light-current characteristics, threshold cur-
rent, and spectral properties, has been discussed in [10]–[12].
The feedback parameter f can be viewed as a measure of the
polarization preserving properties of the fiber loop. In what fol-
lows, we will show that it is indeed possible to introduce a feed-
back parameter according to (1), and we will derive its relation
to the fiber’s birefringence. In particular, we will show that f is
in good approximation equal to the normalized power carried in
the TE-polarization of the light reflected into the laser cavity.

According to the approximate expression given in (1) the
effective front reflectivity is written as the sum of a contribution
from the laser cavity (laser front facet) and a contribution of
the external cavity (fiber and FBG). It is important to realize
that the spectral dependencies of Rf and Rg are very different.
Whereas in standard pump lasers the front mirror reflectivity
is spectrally flat over several tens of nanometers in the 980-nm
region, the FBG reflectivity has a sharply peaked maximum with
a width on the order of one nm within the erbium’s absorption
line. Therefore, if the dominant contribution comes from the
second addend, the properties of the pump laser are governed
by the FBG, and the laser is locked to the FBG. On the other
hand, if Rf dominates, the laser tends to behave as if it were
freely running without being influenced by the reflection from
the FBG. Examples of emission spectra for these two states are
shown in [11, Fig. 4].

Equation (1) is valid for incoherent power-wise addition
of the multiple reflections in the external cavity. Most pump
lasers deployed in EDFAs are preferentially operated in a
multimode state of emission for which an incoherent calculation
is appropriate. In this case, low-frequency power fluctuations
in the kilohertz-regime are strongly suppressed, whereas
high-frequency noise, above approximately 50 kHz, is of no
concern for pumping EDFAs, as it is filtered by the erbium’s
slow response.

III. FIBER BIREFRINGENCE

Bend and twist are the two geometrical deformations usually
imposed on the fiber when mounting it into an EDFA. Controlled

bending is necessitated by space constraints in the EDFA hous-
ing, whereas twist is more likely to be induced accidentally as
a parasitic effect when coiling the fiber into loops.

A bent fiber receives stress in the direction of the bend radius
which causes uniaxial linear birefringence with the fast extraor-
dinary axis e in the plane of the bend (parallel to the bend radius)
and the slow ordinary axis o perpendicular to this plane [13].
The bend-induced birefringence in a fiber is then given by

∆nl ≡ ne − no = −a
( r

R

)2

(2)

where ne and no represent the extraordinary and ordinary refrac-
tive indices, respectively, r denotes the radius of the fiber (core
and glass cladding, usually r = 62.5 µm for standard single-
mode fibers), R is the bend radius, and a contains the elastic
and photo-elastic material constants [13].

A twist of the fiber introduces shearing stress and produces
circular birefringence resulting in a pure rotation of any input
SOP [14]. Thus, a linearly polarized input will remain linearly
polarized, while the output polarization may be rotated with
respect to the input. The circular birefringence ∆nc is given by

∆nc ≡ |nl − nr | =
λ

2π
gτ. (3)

The refractive indices for left and right circular polarization are
denoted by nl and nr , respectively, while τ is the twist rate (in
units of rad/m). The constant g contains the material parameters.

Both circular and linear birefringence are represented by uni-
tary matrices R(α) and M(Φ, θ) in the Jones matrix formal-
ism [15]

R(α) =
(

cos α − sin α
sinα cos α

)
(4)

M (Φ, θ) =
(

cos Φ
2 + i sin Φ

2 cos 2θ i sin Φ
2 sin 2θ

i sin Φ
2 sin 2θ cos Φ

2 − i sin Φ
2 cos 2θ

)

(5)

where α = gτz/2 is the resulting rotation angle of the plane of
polarization, Φ = 2π∆nlz/λ is the linear phase shift and the
angle θ the orientation of the phase plate’s principal axes relative
to the laboratory frame.

Any arbitrary sequence of several retardation plates and ro-
tators can be represented by a simple product of an effective
rotator and an effective linear phase plate [16]

Aeff = M
(
Φeff , θ̃eff

)
R (αeff) ≡

(
A B

−B∗ A∗

)
. (6)

Therefore, a fiber exhibiting circular and linear birefringence
can be represented by the unitary matrix Aeff . The parame-
ters Φeff , θ̃eff , and αeff represent an effective (net) phase shift,
orientation angle, and rotation, respectively. (Alternatively, a
sequence of unitary transformations may be described by the
product R.M, resulting in different effective parameters but
otherwise identical general results.)

For analyzing the resonator formed by the laser front facet and
the FBG, we make use of the fact that the backward propagation
is represented by the transposed matrix AT

eff . Then, by using
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the basic calculation rules for R and M, we find the effective
matrix for one round-trip

AT
effAeff = M(2Φeff , θ̃eff − αeff) ≡ Meff (2Φeff , θeff) . (7)

Meff represents a linear phase plate with twice the effective
phase shift acquired in one pass and an effective orientation
θeff = θ̃eff − αeff with respect to the laboratory frame. For mul-
tiple round-trips, the effective matrix is given by the nth power
of the single round-trip matrix (5)

Mn
eff(2Φeff , θeff) = M (2nΦeff , θeff) . (8)

IV. EFFECTIVE FRONT FACET REFLECTIVITY AND

FEEDBACK PARAMETER

For deriving an expression for the effective front reflectivity
including the effect of birefringence, we calculate the Jones
vector u2 representing the reflected SOP at the laser front facet

u2 = u0 +
∞∑

n=1

u
(n)
2 ≡

(
u2,x

u2,y

)
(9)

with

u0 = rf+ êx (10)

u
(n)
2 = t2f t2c r

n
g rn−1

f−
e2inϕMn

eff êx (11)

where êx is the linearly TE-polarized normalized output SOP
defining the x-direction of the laboratory frame (Fig. 1), and
u

(n)
2 is the Jones vector of the light just passing the laser front

facet after n round-trips in the external cavity. The phase ϕ is
given by ϕ = 2πnfibL/λ, with nfib being the mean refractive
index of the fiber. In general, the reflection coefficients rf+ , rf− ,
and rg , the transmission coefficient tf , as well as the coupling
efficiency tc , are complex numbers referring to field ampli-
tudes. Here, they are assumed to be polarization-independent.
The front facet reflection coefficients seen from inside the laser
cavity rf+ and seen from the external cavity rf− generally have
different phases. The corresponding coefficients with respect to
power are given by

|rf+ |2 = |rf− |2 = Rf

|rg |2 = Rg

|tf |2 = Tf = 1 − Rf

|tc |2 = Tc. (12)

Using (8), we then find the normalized Jones vector û
(n)
2 at

the front facet after n round trips

û
(n)
2 ≡ Mn

eff êx

=
(

cos (nΦeff) + i sin(nΦeff) cos(2θeff)
i sin(nΦeff) sin(2θeff)

)
.

(13)

In the incoherent case, one adds up powers from multiple
round trips in the external cavity. The effective reflectivity can be
defined as the power carried in the TE-component of the vector

u2 given in (9). As a result of some lengthy manipulation of (8)–
(13), we find, for the effective front reflectivity, the expression

Reff =
∣∣rf+

∣∣2 +
∞∑

n=1

∣∣∣u(n)
2,x

∣∣∣2 = Rf + T 2
c (1 − Rf )2

Rg

1 − Rf Rg

×
(

1 − sin2 2θ sin2 Φ

×
(

1 +
Rf Rg (1 + 2 cos 2Φ − Rf Rg )
1 − 2Rf Rg cos 2Φ + (Rf Rg )2

))
(14)

where we have omitted the subscripts for the net phase shift and
orientation angle. (The expression for the coherent case is given
in the Appendix.) By comparing to (1), we immediately realize
that

f = 1 − sin2 2θ sin2 Φ

×
(

1 +
Rf Rg (1 + 2 cos 2Φ − Rf Rg )
1 − 2Rf Rg cos 2Φ + (Rf Rg )2

)
. (15)

Noticing that Rf Rg � 1 (typically Rf Rg is on the order of
10−4 − 10−2) for common reflectivities of 980-nm pump lasers,
we can rewrite (15) as

f = f (1) + δf (16a)

f (1) = 1 − sin2 2θeff sin2 Φeff (16b)

where f (1) represents the first round-trip feedback parameter.
In most practical cases in which the laser is locked to the FBG,
the dominant contribution to f comes from the first round-trip
in the external cavity, whereas higher order reflections only
add a small correction δf . Therefore, f ≈ f (1) is usually a
valid approximation. Moreover, by setting n = 1 in (13) and by
comparing to (16b), we find

f (1) =
∣∣∣û(1)

2,x

∣∣∣2 . (17)

For a discussion of the feedback parameter, we first consider
some particular cases. If the fiber acts as an equivalent λ/2-
plate (Φeff = 0, π, 2π, . . .) or if θeff is a multiple of π/2, i.e.,
one of the principal birefringence axes oriented parallel to the
TE-direction û0, then, according to (15), f takes its maximum
value of 1. In this case, all the Jones vectors u0 and u

(n)
2 , as

well as the resulting reflected vector u2, are parallel to the TE-
direction. On the other hand, if the fiber can be represented by
an equivalent λ/4-plate (Φeff = π/2, 3π/2, 5π/2, . . .) oriented
at θeff = π/4, the SOPs û

(n)
2 alternate between TE-polarization

and its orthogonal transverse-magnetic (TM) counterpart for
even and odd n, respectively. As a result f is always larger
than Rf Rg/(1 + Rf Rg ) > 0, implying that the feedback never
vanishes completely. For the first round-trip, however, we find
f (1) = 0 for this case. Thus, in good approximation, f can be
considered as a parameter taking values between 0 and 1. Finally,
(17) states that the feedback parameter is in good approximation
equal to the TE-polarized fraction of the total power at the laser
facet after the first round-trip.

The importance of (14) to (17) is given by the fact that
the effect of varying polarization state is now included in
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Fig. 2. Basic pump module arrangement with the fiber coiled into N loops of
radius R. The fiber represents a linear waveplate with the fast (extraordinary)
and slow (ordinary) axes denoted by e and o, respectively. The waveplate can
be rotated by an angle θ out of the xz plane of the laboratory frame.

the expression for the compound front reflector. Equation
(15) gives an explicit expression for this feedback parameter.
Generally, f is a function of the four parameters Rf ,Rg , θeff ,
and Φeff . However, in the first round-trip approximation (16b),
the feedback parameter is only a function of the two parameters
describing the birefringence present in the fiber: the phase shift
Φeff quantifying the induced and intrinsic linear birefringence
and the angle θeff that includes the orientation of this linear
birefringence and the effect of the twist applied to the fiber.

We have discussed a method for practical determination of
the feedback parameter earlier in [11] and shown that, again,
in the first round-trip approximation, the feedback parameter is
generally related to the properties of the SOP at the FBG û

(1)
1 by

f (1) =
(

e2 − 1
e2 + 1

)2

(18)

where e = a/b is the ellipticity of û
(1)
1 . (a and b denote the long

and short half axis of the ellipse, respectively.) Equation (18) is
derived by using elementary relations between the Jones vectors
û

(1)
1 and û

(1)
2 . In particular, it shows that if û

(1)
1 is a linear SOP

(e = ∞), f (1) is unity, whereas for û
(1)
1 being a circular SOP

(e = 1), f (1) vanishes.

V. BASIC CONFIGURATIONS WITH FIBER LOOPS

REPRESENTING WAVEPLATES

The most simple mounting configuration for a pump module
is one in which the fiber is looped N times into a coil of radius
R as shown in Fig. 2. The fiber coil represents a linear phase
plate that can be used for manipulating the polarization of the
light propagating in the fiber [17], if other birefringence, e.g.,
in the fiber attachment to the module can be neglected. In this
section, we will discuss the feedback parameter for two cases:
one in which polarization change arises mainly from a rotation
of the fiber coil out of the xz plane of the laboratory frame (i.e.,
a change of the orientation θ of the waveplate’s axes relative
to the laboratory frame) while twist between module and coil
remains weak, and one in which the coil remains in the xz
plane (i.e., with the fast extraordinary axis parallel to the TE-
polarized output SOP of the laser) while strong twist acts on the
fiber section between module and FBG.

Fig. 3. Feedback parameter as a function tilt angle θ using the experimental
arrangement shown in Fig. 2. Lines represent the calculation according to (20)
for N = 1, 2, and 4 fiber loops, respectively (other parameters are given in
the text). Open triangles, solid diamonds, and solid triangles indicate measured
data.

The linear phase difference between the two orthogonal po-
larization components acquired upon propagation through the
fiber loop is given by

Φ = − (2πr)2

λR
aN. (19)

The configuration shown in Fig. 2 with the fiber coil being ro-
tated around the z axis can be described by a sequence of a po-
larization rotator followed by a linear phase shifter, as described
by (6), with θ̃eff = θ, Φeff = Φ given by (19), and αeff = gθ/2
being the polarization rotation angle induced by the twist on the
fiber section between module and coil. According to (16b), the
feedback parameter is then given by

f (1) = 1 − sin2
(
2θ

(
1 − g

2

))
sin2

(
(2πr)2

λR
aN

)
. (20)

The feedback parameter as a function of rotation angle θ for
three different waveplate configurations is shown in Fig. 3 for a
Corning HI1060 fiber with r = 62.5 µm, R = 2.9 cm, and N =
1, 2, and 4, and λ = 980 nm. The solid lines indicate calculations
using the material parameters a = 0.13 [13] and g = 0.146 [14].
According to (19), the respective fiber loops correspond to wave-
plates with phase shifts of 0.22π, 0.45π, and 0.90π, respectively,
i.e., approximately λ/8-, λ/4-, and λ/2-waveplates. The good
agreement between calculation and measurement indicates that
the aforementioned values for a and g are valid in this case.

In most common EDFA designs, the fiber coil is arranged in
the plane of the housing that corresponds to the xz plane of our
laboratory frame. In this case, the fast axis of the coil is parallel
to x, and one expects that the incident linear SOP is parallel to
this axis. Hence, the SOP should remain linear upon propaga-
tion through the coil always yielding f = 1 for any phase shift
acquired. However, this is no longer true if twist is present in
the fiber section between laser and loop. In this situation with
θ taking values of θ = mπ with m = 0, 1, 2 . . ., the initial TE-
polarized SOP from the laser is rotated as the light propagates
through the twisted fiber section between laser and coil. As a
result the linear SOP arriving at the coil is generally no longer
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Fig. 4. Measured (solid diamonds) and calculated (open circles and dashed
line) effective feedback of a FBG stabilized module with a fiber wound into a
λ/4-waveplate. The section between laser and FBG is rotated by multiples m
of π around the fiber axis such that θ = mπ (Fig. 2).

parallel to one of the coil’s principal axes but rotated by an angle
αeff = gmπ/2. In practice, this second scenario can occur if the
fiber is first looped into a coil, and then, during mounting into the
EDFA housing, this coil is accidentally or intentionally rotated
around the fiber axis in the section between module and coil.

A measurement representative of this second case is shown
in Fig. 4. The full diamonds indicate the measured feedback
parameter for a fiber coil approximately equivalent to a λ/4-
waveplate (Φ = π/2). Twist in the fiber section between laser
and coil is induced by rotating the coil in multiples m of π,
while the coil remains in the xz plane. Open circles are calcu-
lated for the respective angles θ = mπ with 0 ≤ m ≤ 25. The
dashed line merely connects these points. As expected for a λ/4-
waveplate, the feedback parameter oscillates between 0 and 1,
indicating that this twist-induced rotation of the SOP can cause a
variation of the feedback parameter as strong as the one resulting
from the previously discussed orientational change of the fiber
coil. For small m that are most likely to occur in a manufactur-
ing environment, the feedback parameter drops to f = 0.81 for
m = 1, f = 0.38 for m = 2 and as low as f = 0.04 for m = 3.
In other words, if the coil is rotated 1.5-times around the fiber
axis, the feedback parameter can almost completely vanish. This
illustrates the importance of careful fiber handling that avoids
twist when mounting a module with a fiber wound in a coil into
an EDFA.

VI. SUPERPOSITION OF SEVERAL BIREFRINGENCE TYPES

In Section V, we have discussed the situation in which
two different birefringence mechanisms appear sequentially
along the fiber, while in a given fiber section, only one type
of birefringence is present. In what follows, we shall allow for
a superposition of several birefringence types in an otherwise
homogeneous fiber.

For all following examples, we assume that the fiber is
looped into a circular coil of radius R while twist of rate τ

is simultaneously applied to the fiber during coiling. Three dif-
ferent superposed birefringence mechanisms are taken into ac-
count: 1) a bend-induced (“strong”) linear birefringence ∆ni

oriented at an angle θi relative to the laboratory frame, 2) a par-
asitic (“weak”) linear birefringence ∆np oriented at an angle
θp , and 3) a circular birefringence producing a rotation of po-
larization per unit length of ρ = gτ/2. Notice that the intrinsic
parasitic birefringence of single-mode fibers can exceed 10−7,
the same value that is obtained for the induced birefringence in
a loop of 7-cm radius.

The case of several superposed birefringence mechanisms can
be treated by integration of differential Jones matrices [18], [19].
As a result of this procedure, we obtain, for the propagation
between laser and FBG, the matrix

A =
( cos QL + iS sinQL

Q (−ρ + iC) sinQL
Q

(ρ + iC) sinQL
Q cos QL − iS sinQL

Q

)
(21)

with

S =
π

λ
(∆ni cos 2θi + ∆np cos 2θp) (22a)

C =
π

λ
(∆ni sin 2θi + ∆np sin 2θp) (22b)

Q = (S2 + C2 + ρ2)1/2. (22c)

Notice that A takes the same general form as the matrix Aeff

in (6) so that all relations for the feedback parameter f derived in
Section IV are also valid for the case of superposed birefringence
mechanisms. By calculating the Jones vector û

(1)
2 and by using

(17), we obtain the first round-trip feedback parameter

f (1) = 1 −
(

C

Q
sin 2QL +

2ρS

Q2
sin2 QL

)2

. (23)

The mathematical condition for polarization control is con-
tained in (22): Whenever ∆ni � ∆np and ∆ni � ρλ/π, the
induced birefringence will dominate all parasitic effects.

For assessing the robustness of the fiber loop against po-
larization change, it is useful to define a lower limit below
which the feedback parameter is not allowed to drop, for ex-
ample, f = 0.5. A suitable means for evaluating the tolerance
against twist is to analyze the dependence of the feedback pa-
rameter on fiber length. This function oscillates whereby the
modulation depth increases with growing twist rate. An exam-
ple is shown in Fig. 5 for a circular fiber coil arranged in the
xz plane of the laboratory frame (θi = 0) and a bend radius
of 3 cm, with the twist rate as a parameter. The respective
induced birefringence is 5.6 × 10−7. Parasitic linear birefrin-
gence is supposed to vanish. For a twist rate of 6.3 (2π) rad/m
(1 full turn/m), the feedback parameter does not drop below
0.75, whereas at 25 (8π) rad/m, the feedback parameter can
completely vanish.

In Fig. 6, we plot the calculated dependence of the feedback
parameter on the bend radius for a fiber length of 1 m, and
twist rates of 6.3, 18.9, and 62.8 rad/m, and θi = 0. Again,
parasitic birefringence is supposed to vanish. For sufficiently
strong induced birefringence, i.e., for small bend radii, the
feedback parameter is close to unity. Resonant coupling to the
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Fig. 5. Calculated feedback parameter as a function of fiber length for a fiber
submitted to uniform bend and twist, assuming a circular fiber coil arranged in
the xz plane (θi = 0) with a loop radius of 3 cm. Parasitic linear birefringence
is supposed to vanish (twist rates as indicated).

Fig. 6. Calculated feedback parameter as a function of bend radius for a fiber
submitted to uniform twist, assuming a circular fiber coil arranged in the xz
plane (θi = 0). The fiber length is 1 m. Twist rates are as indicated in the graph.

orthogonal polarization mode occurs whenever circular and
linear birefringence are of the same magnitude (∆ni ≈ λρ/π),
setting an upper limit to the useful coil radius. For the particular
fiber length of 1 m, the feedback parameter does not drop below
0.6 for any bend radius at a twist rate of 6.3 rad/m, whereas at
a twist rate of 12.6 rad/m, the feedback parameter drops below
0.5 at a radius of 3 cm. The dotted curve with τ = 62.8 rad/m is
a useful example despite the high twist rate, as it illustrates how
twist applied during looping can reduce the feedback parameter.
If a fiber pigtail of 1 m is wound into a coil of 10 loops with
1.6 cm radius, applying a twist of 2π per loop, the twist rate is
exactly 62.8 rad/m. For this particular loop radius and twist rate,
the feedback parameter takes a value as small as ∼0.1. A sim-
ilar effect of cross-coupling between orthogonal polarization
modes due to a periodic perturbing birefringence is mentioned
in [6].

In Fig. 7, we plot the calculated dependence of the feedback
parameter as a function of parasitic birefringence oriented at
θp = 0.62π, which is approximately worst case) for uniform
twist rates of 0, 6.3, 12.6, and 18.9 rad/m. The coil radius is
3 cm (∆ni = 5.6 × 10−7), and the fiber length is 1 m. Whereas
for a twist rate of 6.3 rad/m the feedback parameter remains
higher than 0.7, it shows a considerably stronger variation for

Fig. 7. Feedback parameter as a function of parasitic linear birefringence for
a fiber loop of 3-cm radius (∆ni = 5.6 × 10−7, θi = 0) and different twists
rates as indicated in the graph. The parasitic linear birefringence is oriented at
an angle of 0.62π in this example and the fiber length is 1 m.

Fig. 8. Measured (diamonds) and calculated (lines) feedback parameter as a
function of twist rate applied to the fiber (length 2 m) looped into a coil of (a)
1.6- and (b) 3-cm radius (θi = 0). The data are taken with an FBG in a Corning
HI1060 single-mode fiber.

twist rates of 12.6 and 18.9 rad/m, indicating that the induced
linear birefringence no longer effectively counteract, the para-
sitic linear and circular birefringence.

The increasing robustness of the feedback parameter against
twist with decreasing bend radius is reflected in Fig. 8(a) and
(b). We have realized measurements of the feedback parameter
using an apparatus that enabled us to apply a controlled twist rate
to the fiber of 2-m length while looping it into a coil of defined
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radii of 1.6 and 3 cm. Solid lines indicate the calculated depen-
dence, assuming that parasitic linear birefringence is negligible
(∆np = 0). Clearly, the feedback parameter is much less sen-
sitive to twist for R = 1.6 cm than for R = 3 cm. Notice that
the general trends of measurement and calculation are in good
agreement. At high twist rates, which are rather unlikely to oc-
cur in practice, accurate control of the torque applied to the fiber
makes precise control of the birefringence difficult. Moreover,
small parasitic nonuniformities along the fiber in combination
with a high twist rate and small bend radius can have a strong
impact on feedback parameter control. This explains the devia-
tions between measurement and calculation in this regime.

VII. CONCLUSION

Including a feedback parameter into the effective reflector
model for FBG stabilized pump lasers with TE-polarized out-
put enables us to quantify the effects of linear and circular bire-
fringence on the effective feedback and, ultimately, on the pump
laser characteristics. This feedback parameter can be easily mea-
sured by analyzing the ellipticity of the SOP at the location of
the FBG [11], [12].

Generally, it is a combination of twist and linear birefrin-
gence that causes coupling to the orthogonal TM-polarization
and, thus, a reduction of effective feedback into the laser cav-
ity. The strategy for controlling the polarization in the fiber
loop is to induce a strong linear birefringence that dominates
any parasitic birefringence and to fix its axes properly. Such a
situation is obtained if the fiber is looped into a circular coil
located in the xz plane. A circular fiber arrangement is clearly
more robust than oval, elliptical, or rounded-rectangular fiber
geometries. In these latter cases, there is no induced birefrin-
gence mechanism that counteracts parasitic birefringence on the
weakly bent or straight sections of fiber. The robustness against
twist and intrinsic birefringence decreases as bend radius and
fiber length increase. As a guideline, the coil radius should not
exceed 4 cm for a fiber length of 1–1.5 m, if a tolerance for
twist of 6.3 rad/m (1 full turn/m) and intrinsic birefringence of
10−7 is to be maintained. Because of the quadratic growth of
induced birefringence with decreasing coil radius, considerable
improvements in robustness are obtained by relatively small re-
ductions of the coil radius. The practical lower limit for the loop
radius is imposed by fiber reliability, fiber handling, geometrical
constraints, etc., and is typically 1.5 to 2 cm. Ultimately, an op-
timized fiber loop arrangement is designed by finding a balance
between these various parameters.

Having discussed the two cases of sequential arrangement of
two different birefringent elements (rotator followed by linear
phase plate) as well as superposition of several birefringence
mechanisms in a uniform fiber (twist and bend), we conclude
on the importance of minimizing parasitic effects, in particular,
twist. In an ideal fiber arrangement twist is completely elimi-
nated. Practically, the FBG parameters are chosen in such a way
that locking is maintained for a feedback parameter as low as
0.1. In combination with the guidelines outlined in this article,
this gives a sufficient margin for cost-effective large-scale man-
ufacturing of EDFAs.

APPENDIX

For deriving an expression for the effective front reflectivity
in the coherent case for amplitude-wise addition of round-trips
in the external cavity, we make use of (8) to (13). Again, after
some lengthy calculation, we obtain

Reff = |u2,x |2 =

∣∣∣∣∣rf+ +
∞∑

n=1

u
(n)
2,x

∣∣∣∣∣
2

=

∣∣∣∣∣rf+ +t2f t2c rg e
2iϕ (cos Φ+i sin Φ cos 2θ)−rg rf−e2iϕ

1−2rg rf−e
2iϕ cos Φ+r2

g r2
f−

e4iϕ

∣∣∣∣∣
2

(A1)

where Φ and θ indicate a net phase and a net orientation angle,
respectively. An amplitude feedback parameter f̃ can then be
expressed as

f̃ =
(1 − rg rf−e2iϕ )(cos Φ + i sin Φ cos 2θ − rg rf−e2iϕ )

1 − 2rg rf−e2iϕ cos Φ + r2
g r2

f−
e4iϕ

.

(A2)
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